UCSB engineers proteins that make silicon, leads hipsters to insist on organically-grown computers
Organic circuits have been in development for awhile, but it's still rare that the organics are producing the circuitry themselves. Researchers at the University of California, Santa Barbara plan to break that silence with genetically engineered proteins that can make silicon dioxide or titanium dioxide structures like those used in the computer chips and solar cells that we hold dear. The trick, the university's Daniel Morse found, is to attach silica-forming DNA to plastic beads that are in turn soaked in the silicon or titanium molecules they're looking for: after some not-so-natural selection for the best genes, the thriving proteins can produce not only substantial minerals, but whole fiber sheets. Much work is left to get the proteins producing the kind of silicon or titanium dioxides that could run a computer or power your house, but the dream is to have synthetic creations that organically produce what would normally need a mining expedition -- imagine something akin to the glass-like Venus' Flower Basket sponge (pictured above) sitting in an Intel factory. We're half-expecting organically-grown smartphones at Whole Foods, right next to the kale chips and fair trade coffee.
[Image credit: Ryan Somma, Flickr]