Advertisement

Sony's new cameraphone CMOS jams bigger gear into the same space (video)

Sony's done gone and developed a new back-illuminated CMOS designed to improve the state of your casual camerawork. Traditional units mount a merged pixel-sensor and circuit on a supporting substrate -- the innovation here is to produce the two separately and layer them without any additional material. This makes manufacturing easier and without a mount, you're able to lever-in bigger kit into the same space. It's also packing HDR Movie, which like the still-image version, will produce better moving pictures in tricky light. An eight-megapixel version will ship to cellphone producers in March, with a 13-megapixel edition following in June and if Sony's really successful, it might earn enough to buy a copy of Photoshop rather than producing release images in MS Paint.



Show full PR text

Sony Develops Next-generation Back-Illuminated CMOS Image Sensor which Embodies the Continuous Evolution of the Camera

- Expanding Shooting Enjoyment and Advanced Functionality of Smartphones and Other Devices -

Tokyo, Japan - January 23, 2012 - Sony Corporation ("Sony") today announced that it has developed a new next-generation back-illuminated CMOS image sensor which embodies the continuous evolution of the camera.

This image sensor layers the pixel section containing formations of back-illuminated structure pixels onto chips containing the circuit section for signal processing, which is in place of supporting substrates for conventional back-illuminated CMOS image sensors. This structure achieves further enhancement in image quality, superior functionalities and a more compact size that will lead to enhanced camera evolution.

Hereafter, Sony will position it as the next generation back-illuminated CMOS image sensors, and unwaveringly strive to further develop this image sensor and expand its product lineup, thereby contributing to the further development of user-friendly cameras and to shooting enjoyment.

Background of development

The popularization of smartphones and other devices in recent years has been accompanied by an increasingly diverse use of camera functionality. This has brought heightened demand for more sophisticated cameras, to ensure adaptability to a wider range of scenes and Sony developed this stacked CMOS image sensor to meet such demand. In addition to the higher pixel numbers, superior image quality and faster speeds which conventional image sensors pursued, the newly-developed image sensors further achieve more highly-advanced functionalities and a more compact size, thus paving the way for enhanced camera evolution.

As the first step towards the commercialization of its new CMOS image sensors, Sony has developed a model with built-in signal processing functionality, an element that usually requires external embedment. Samples will be shipped from March, 2012. Accordingly, models have been developed with Sony's unique "RGBW Coding" function, which facilitates low noise, high quality image capture even in low light condition, and the proprietary "HDR (High Dynamic Range) Movie" function, which achieves brilliant color even when taking pictures against bright light.

About stacked CMOS image sensors

Conventional CMOS image sensors mount the pixel section and analog logic circuit on top of the same chip, which require numerous constraints when wishing to mount the large-scale circuits such as measures to counter the circuit scale and chip size, measures to suppress noise caused by the layout of the pixel and circuit sections, and optimizing the characteristics of pixels and circuit transistors.

Sony has succeeded in establishing a structure that layers the pixel section containing formations of back-illuminated structure pixels over the chip affixed with mounted circuits for signal processing, which is in place of supporting substrates used for conventional back-illuminated CMOS image sensors. By this stacked structure, large-scale circuits can now be mounted keeping small chip size. Furthermore, as the pixel section and circuit section are formed as independent chips, a manufacturing process can be adopted, enabling the pixel section to be specialized for higher image quality while the circuit section can be specialized for higher functionality, thus simultaneously achieving higher image quality, superior functionality and a more compact size. In addition, faster signal processing and lower power consumption can also be achieved through the use of leading process for the chip containing the circuits.